\(\int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx\) [98]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 248 \[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=\frac {2 \sqrt {-1-x^3}}{1-\sqrt {3}+x}-\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right ),-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}} \]

[Out]

2*(-x^3-1)^(1/2)/(1+x-3^(1/2))+4*3^(1/4)*(1+x)*EllipticF((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))*(1/2*6^(1/
2)-1/2*2^(1/2))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)-3^(1/4)*(1+x)*
EllipticE((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2
))/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1894, 225, 1893} \[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}+\frac {2 \sqrt {-x^3-1}}{x-\sqrt {3}+1} \]

[In]

Int[(-1 + Sqrt[3] - x)/Sqrt[-1 - x^3],x]

[Out]

(2*Sqrt[-1 - x^3])/(1 - Sqrt[3] + x) - (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)
^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^
2)]*Sqrt[-1 - x^3]) + (4*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticF[A
rcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x
^3])

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r
*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 1893

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 + Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 + Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x
] + Simp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/(
(1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rule 1894

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 + Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 + Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && NeQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = \left (2 \sqrt {3}\right ) \int \frac {1}{\sqrt {-1-x^3}} \, dx-\int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx \\ & = \frac {2 \sqrt {-1-x^3}}{1-\sqrt {3}+x}-\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.27 \[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=-\frac {x \sqrt {1+x^3} \left (-2 \left (-1+\sqrt {3}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-x^3\right )+x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-x^3\right )\right )}{2 \sqrt {-1-x^3}} \]

[In]

Integrate[(-1 + Sqrt[3] - x)/Sqrt[-1 - x^3],x]

[Out]

-1/2*(x*Sqrt[1 + x^3]*(-2*(-1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3] + x*Hypergeometric2F1[1/2, 2/3
, 5/3, -x^3]))/Sqrt[-1 - x^3]

Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 1.62 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.21

method result size
meijerg \(i x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^{3}\right )+\frac {i x^{2} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};-x^{3}\right )}{2}-i \sqrt {3}\, x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^{3}\right )\) \(52\)
elliptic \(-\frac {2 i \left (\sqrt {3}-1\right ) \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}+\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) E\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}\) \(272\)
default \(\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}+\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) E\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}-\frac {2 i \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}-1}}\) \(370\)

[In]

int((-1-x+3^(1/2))/(-x^3-1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

I*x*hypergeom([1/3,1/2],[4/3],-x^3)+1/2*I*x^2*hypergeom([1/2,2/3],[5/3],-x^3)-I*3^(1/2)*x*hypergeom([1/3,1/2],
[4/3],-x^3)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.25 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.09 \[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=-2 \, {\left (i \, \sqrt {3} - i\right )} {\rm weierstrassPInverse}\left (0, -4, x\right ) - 2 i \, {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) \]

[In]

integrate((-1-x+3^(1/2))/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

-2*(I*sqrt(3) - I)*weierstrassPInverse(0, -4, x) - 2*I*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x))

Sympy [A] (verification not implemented)

Time = 1.19 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.39 \[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=\frac {i x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} - \frac {\sqrt {3} i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} + \frac {i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \]

[In]

integrate((-1-x+3**(1/2))/(-x**3-1)**(1/2),x)

[Out]

I*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3*exp_polar(I*pi))/(3*gamma(5/3)) - sqrt(3)*I*x*gamma(1/3)*hype
r((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3)) + I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp
_polar(I*pi))/(3*gamma(4/3))

Maxima [F]

\[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=\int { -\frac {x - \sqrt {3} + 1}{\sqrt {-x^{3} - 1}} \,d x } \]

[In]

integrate((-1-x+3^(1/2))/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x - sqrt(3) + 1)/sqrt(-x^3 - 1), x)

Giac [F]

\[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=\int { -\frac {x - \sqrt {3} + 1}{\sqrt {-x^{3} - 1}} \,d x } \]

[In]

integrate((-1-x+3^(1/2))/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x - sqrt(3) + 1)/sqrt(-x^3 - 1), x)

Mupad [B] (verification not implemented)

Time = 9.15 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.45 \[ \int \frac {-1+\sqrt {3}-x}{\sqrt {-1-x^3}} \, dx=\frac {\sqrt {3}\,x\,\sqrt {x^3+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {4}{3};\ -x^3\right )}{\sqrt {-x^3-1}}+\frac {6\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {6\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

[In]

int(-(x - 3^(1/2) + 1)/(- x^3 - 1)^(1/2),x)

[Out]

(3^(1/2)*x*(x^3 + 1)^(1/2)*hypergeom([1/3, 1/2], 4/3, -x^3))/(- x^3 - 1)^(1/2) + (6*(x^3 + 1)^(1/2)*((x + (3^(
1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x +
1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticE(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 +
3/2)/((3^(1/2)*1i)/2 - 3/2)))/((- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1)
- ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)) - (6*(x^3 + 1)^(1/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(
1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 +
3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 -
3/2)))/((- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2
)*((3^(1/2)*1i)/2 + 1/2))^(1/2))